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Abstract

In the analysis of a compromised system, it is important to identify what has been compromised, re-
cover as much useful state information as possible, and restore the system to a usable, but less vulnerable
state. The purpose of this paper is to demonstrate the utility of system baselining as a technique that
supports these goals.

From a forensic point of view, the ability to detect change correctly and consistently is a top priority.
When computers are accessed in an unauthorized manner, the state of various file objects will change.
This change can manifest itself in various ways – slow system response, additional daemons in the pro-
cess table, lost or damaged data, et cetera. Unfortunately, without the tools and techniques to detect and
evaluate such change, systems could operate for quite some time, perhaps indefinitely, without exceeding
operational limits generally considered to be abnormal.

Using tools and techniques that are “court worthy” will get the job done without ruling out the possi-
bility of pursuing legal remedies. FTimes – a system baselining and evidence collection tool – addresses
these specific problems and goals and is well-suited to handle the types of applications and environments
incident handler’s are likely to encounter.

1 Introduction

Incident response handlers are faced with responding whenever and wherever incidents occur. In enter-
prise environments, decision makers, administrators, and response handlers may all be in different loca-
tions and time-zones, and they may all be remote from the equipment. This problem is often complicated
by an unwillingness, on the part of the victim, to vacate the premises while it is, in effect, burning down.
Forensic examination of systems usually requires that they be shutdown so that their disks can be extracted
and imaged. Victims are often unwilling to shutdown production systems for any reason, and they will
seldom be amenable to having disks removed especially if it requires hardware disassembly.

Even worse, the client is frequently indecisive about the course of action to take: pursue the perpetrators
and prosecute, or clean up, patch, and move on. In many cases, the client does not have adequately trained
staff on-site who could assist with the initial response effort.

To combat this problem, practitioners need high quality, lightweight, easy to use tools and techniques. It
is important to quickly identify what has been compromised, to recover as much useful state information
as possible, and to restore the system to a usable, but less vulnerable state. One extremely useful technique
in this situation is to create a “system baseline.” The baseline provides a snapshot of the state of the system
at the time the incident response begins. In some cases, the baseline may be sufficient to determine what
occurred and to direct the response effort.

Since the victim may not initially be able to decide whether to pursue attackers through prosecution,
it is incumbent on responders to begin as though prosecution was desired. Later, legal remedies may be
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abandoned, and some unnecessary work will have been done. However, if the response is not initiated in a
way that supports prosecution, it is unlikely that such a decision could be taken at a later time – generally,
poor handling of evidence would no longer support prosecution.

This paper defines baselining terminology, explains the mechanics of baselining, compares and contrasts
different baselining techniques, and describes FTimes – a system baselining and evidence collection tool.
The paper also explores some of the criteria that evidence collection tools and techniques must satisfy if
they are going to support prosecutions. In closing, it presents a pair of war stories that are typical of the
times.

2 Background

This section introduces and defines baselining terminology, describes and discusses critical baselining fac-
tors, explains the mechanics of baselining, and states baselining objectives from administrative and forensic
perspectives.

2.1 Terminology

A baseline is a set of critical observations or data used for comparison [Mer94]. A snapshot is an impression
or view of something transitory [Mer94]. In the context of file integrity, a snapshot refers to a set of critical
observations (i.e., file attributes) taken at a particular point in time from one or more file objects stored on a
given system. When a particular snapshot is used as the reference in change analysis it is called a baseline.
In other words, a baseline is a particular, designated snapshot. The baseline is usually, but not necessarily,
the first snapshot taken. This paper defines change analysis as the process of comparing a snapshot to a
baseline. Baselining, in this context, is the process of taking a snapshot and subsequently designating it as
the baseline. A message digest is a cryptographic hash computed over a given block of data such as a file’s
content. The term subject will be used, throughout this paper, to describe some aspect of the system being
baselined or examined.

2.2 Critical Baselining Factors

There are four critical factors involved in baselining: provenance, perspective, acuity, and integrity.

2.2.1 Provenance

Provenance is the origin or source of an object [Mer94]. Provenance plays an important role in change
analysis. One of the major advantages of baselining is that a file can be summarized by its attributes. If
these attributes provide enough detail about a given file, then changes to that file can usually be detected by
comparing snapshot data to corresponding baseline data. In particular, if a file’s content changes, one may
conclude with near certainty that the file’s hash has changed. However, one can conclude nothing about
the nature of this change unless the new hash represents a well-known value. In other words, a hash is
useless for characterizing file content unless its provenance is known. This is because it is computationally
infeasible to reconstruct a file’s content from its hash. In the absence of such a binding, the practitioner
must inspect a file’s content to determine its type, purpose, and origin (if possible).

One way to determine the provenance of a given file object is to compare its hash to a previously recorded
hash for that object. If there is no previously recorded hash, one may1 be able to use hashes computed from
the original distribution media to determine provenance. However, it would not be prudent to assume that

1This, of course, depends on how distributions are packaged – individual files may need to be uncompressed, decrypted, or
dynamically created during an installation.
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distributions are sacred; they can be compromised too, and this should be kept in mind when conducting
post mortem analysis.

If provenance can’t be confirmed through hash comparisons, it can, in some cases, be asserted. This
is done by manually inspecting a given file. Once the file has been fully characterized, its hash may be
computed, and the two (file and hash) may be bound together for future reference.

Sometimes exact provenance isn’t needed to identify a file that is part of an intrusion. For example, in
a directory such as /usr/bin consisting of ”old” files, a newly created or modified file is sufficiently out
of place to warrant further attention. Hidden directories, especially where no subdirectories would be
expected, are always out of place. Files that grow between snapshots that are not known to be log files are
also suspicious. Indicators such as these may be all that is needed to set the response handler on the right
path.

2.2.2 Perspective

Perspective is the capacity to view things in their true relations or relative importance [Mer94]. Baselining
tools must run in or be able to create an environment that maintains perspective. Without this, a tool can
only see what it is allowed to see. In other words, it can only see part of the necessary context. An attacker
with sufficient privilege may decide to construct an environment that artificially alters perspective. Baselin-
ing tools that run in such an environment produce results that can not, in general, be trusted. Perspective
can be artificially altered by modifying application code, libraries, or system calls. In some cases, the same
result can be achieved by manipulating relevant application or system data.

A good example of an environment that artificially alters perspective would be a compromised system
where a rootkit has been installed. “A rootkit is a collection of tools an intruder brings along to a victim
computer after gaining initial access. A rootkit generally contains network sniffers, log-cleaning scripts, and
trojaned replacements of core system utilities such as ps, netstat, ifconfig, and killall. Although
the intruders still need to break into a victim system before they can install their rootkits, the ease-of-use
and the amount of destruction they cause make rootkits a big threat for system administrators. . . . Arguably
the most severe threat to system security that can be caused by a rootkit comes from those that deploy LKM
(Loadable Kernel Module) trojans. Loadable Kernel Modules are a mechanism for adding functionality to
an operating-system kernel on the fly – without requiring a kernel recompilation [Alt01].”

2.2.3 Acuity

Acuity is keenness of perception [Mer94]. In other words, it is the relative ability of a tool to resolve detail.
Without good acuity, baselining tools effectively have impaired vision – they can only see what they were
built to see. If the condition is bad enough, be assured that attackers will take advantage of the situation.

For example, in Microsoft’s NTFS (New Technology File System) a file object is implemented as a se-
ries of streams. By default, file content is stored in the object’s unnamed stream. However, a user can
choose to create and store data in an alternate or named stream. One problem with this is that programs
like dir and explorer have no mechanism to enumerate alternate streams. Consequently, such streams
remain hidden to the observer. Even worse, the WIN32 API, itself, does not provide an adequate mech-
anism to enumerate alternate streams. Tool designers who want this level of acuity must either use the
Backup{Read|Seek|Write} routines or drop down a level, to the Native API, and use the undocumented
NtQueryInformationFile routine.

Perfect acuity is realized only when the designers of tools fully understand and can obtain necessary and
sufficient access to the underlying mechanics of the system technology they are trying to interrogate.

2.2.4 Integrity

Integrity is an unimpaired condition or the quality or state of being complete or undivided [Mer94]. In
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other words, it’s the state of being uncorrupted, complete and sound. The integrity of the baselining tool,
its input, and its output must be protected throughout the baselining process, and, if possible, indefinitely.
In any case, the baseline’s integrity must remain steadfast throughout its lifespan if one expects to assert
that future change analysis will yield accurate, reliable, and consistent results.

Two general types of attacks that can be used to compromise the integrity of a baselining tool and/or
its data are on-disk and memory resident modification. On-disk modification of the tool/data could be
accomplished by replacing it or applying a patch (i.e., through modification to a portion of the tool/data).
Memory resident modification could be accomplished by manipulating memory buffers either while they
are in memory or swap space.

2.3 Baselining Objectives

In our forensic practice, we approach baselining from two perspectives: forensic and administrative. The
ultimate goal of a forensic process is to reconstruct, as accurately as possible, those events that led to change.
The administrative process, on the other hand, is more concerned with the problem of automatically de-
tecting, reporting, and possibly correcting change for a large number of host systems.

2.3.1 Forensic Objective

The forensic objective of baselining is to record an accurate snapshot while minimizing or eliminating per-
turbation to the subject system. Primary concerns are preservation of evidence, integrity, correctness, com-
pleteness, error reporting, consistency, and ease-of-use. Time and automation considerations are important,
but not priorities. One of the forensic practitioner’s priorities is to build a case based on evidence that stands
up to cross examination in court. It may be the case that such evidence never makes its way to court, but
adopting evidence collection and analysis processes that are “court worthy” is a good practice because it
creates a firm foundation that is defensible.

2.3.2 Administrative Objective

The administrative objective of baselining is to record an accurate snapshot while minimizing the admin-
istrative effort involved. Primary concerns are time involved, automation, scalability, built-in analysis, cor-
rectness, and ease-of-use. The administrator wants problems to be detected and corrected automatically.
Administrators also want intelligent alerting and solid logging facilities. In other words, “don’t bother me
unless there is a serious problem, but when that happens, give me access to a log trail that contains as much
as possible.”

2.4 Baselining Mechanics

The processes for creating a baseline and subsequently detecting change can be summarized as follows:

1. Define the set of attributes that are relevant to the type of change you wish to detect. Next, develop or
obtain a minimally invasive tool with good acuity that systematically traverses specified directories
and files and collects or derives the chosen attributes.

2. Choose a perspective that supports your baselining objective(s), and baseline the subject using the
tool developed or obtained in step one. Archive the results in a manner that maintains provenance
and preserves integrity.

3. At some point in the future, create a snapshot by repeating step two. Determine change by comparing
the snapshot to the baseline.
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4. Periodically repeat step three reverting, instead, to step two whenever a new baseline is desired.

3 Baselining Techniques

This section describes four different techniques for baselining a system: Alternate Platform, Alternate Op-
erating System, Single-User-Mode, and Multi-User-Mode. These techniques are ordered from a forensic
point of view according to their ability to maintain perspective and integrity. For each technique, we point
out the advantages and disadvantages of its approach. In the end, the practitioner must determine, on a
case-by-case basis, which technique to use based on available resources, time constraints, and operational
limitations.

3.1 Alternate Platform

The safest way to create a baseline, from a forensic point of view, is to utilize a dedicated, stand-alone
computer that has been configured specifically to mount and scan disks extracted from subject systems
(i.e., a baselining system). However, the process of extracting subject disks may not be easy or practical,
and it can be fraught with technical problems that, if not handled correctly, could result in irreparable
damage.

Advantages

1. This technique is completely independent of the subject system. This provides the necessary out-of-
band perspective to analyze the extracted disks.

2. This technique can effectively access all files contained within subject file systems because the baselin-
ing tool runs outside the context of the subject operating system. A baselining tool that operates
within the context of a running operating system can’t always access all files maintained by that sys-
tem due to kernel or other locking mechanisms. This can be true even if the baselining tool runs with
full system privileges.

3. If properly protected, the integrity of the baselining tool and the data it collects will be guaranteed.

4. The baselining system can mount subject file systems with software read-only access. Older SCSI
disks may have a physical jumper that can be set to enforce hardware read-only access. Also, write
blockers can be employed to ensure read-only access.

Disadvantages

1. The practitioner must supply, maintain, and control access to the dedicated hardware/software re-
sources that constitute the baselining system.

2. This technique is time consuming, and it requires human interaction and physical access to all systems
involved.

3. The subject operating system must be taken off-line. Down time could last minutes to hours.

4. The subject system may need to be disassembled to extract its disks. This increases the risk of ir-
reparable damage. Also, the practitioner must have a working knowledge of the various hardware
components that may be encountered.
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3.2 Alternate Operating System

Another relatively safe way to create a baseline is to boot the subject system into an alternate operating
system that can access and scan subject file systems. To minimize perturbation, the practitioner should not
write output to subject media. If possible, subject file systems should be mounted with software read-only
access.

Advantages

1. This technique is completely independent of the subject operating system. This provides an out-of-
band perspective to analyze the system’s disks. However, if the system’s hardware/firmware has
been compromised, perspective could be at risk.

2. This technique can effectively access all files contained within subject file systems because the baselin-
ing tool runs outside the context of the subject operating system.

3. If properly protected, the integrity of the baselining tool and the data it collects will be guaranteed
provided that the system’s hardware/firmware has not been compromised.

4. The baselining operating system can mount subject file systems with software read-only access.

5. Baseline output may be directed to one of several different types of media such as parallel/serial/usb
port, network, attached SCSI, PCMCIA, et cetera. This gives the practitioner more ways to overcome
operational limitations (e.g., no external SCSI port).

Disadvantages

1. The practitioner must supply, maintain, and control access to the dedicated hardware/software re-
sources that perform this function. This is complicated by the fact that each subject system encoun-
tered may have unique characteristics that require different hardware/software resources and sup-
port.

2. This technique is time consuming, and it generally requires human interaction and physical access to
the subject system.

3. The subject operating system must be taken off-line. Down time could last minutes to hours.

4. The practitioner must have detailed knowledge of the boot process for each subject system that is to
be baselined – today many systems support multiple boot devices and various boot options.

5. The alternate operating system must provide driver support for the various subject file systems that
may be encountered.

6. If the alternate and subject operating systems coexist, then it may be possible, from the context of
the subject operating system, to corrupt the baselining tool or its data either prior to or after taking a
snapshot.

3.3 Single-User-Mode

The third technique for creating a baseline is to bring the subject system into single-user-mode. In this state
there should be a minimal number of system processes running, networked shares should not be mounted,
normal users should not be able to access the system, and it should be possible to re-mount some or all
subject file systems with read-only access. Unfortunately, not all systems support single-user-mode (e.g.,
Windows NT/2K/XP), so this technique does not apply universally.
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One major issue that must be considered with this technique is where output will be written. If possible,
output should be written to external media that has been attached specifically for this purpose. In some
cases, it may turn out that the only practical place to store output is on a subject file system. In forensic
scenarios, this is less desirable because it implies that potential evidence will be overwritten in the process.
Baselines taken under these conditions still have value, but the practitioner must weigh the anticipated
benefits and risks prior to taking action.

Advantages

1. This technique provides a restricted access environment for creating a baseline.

2. This technique can effectively access most to all files contained within subject file systems. Because
the baselining tool runs within the context of the subject operating system, it may lack the necessary
privileges to access all file objects.

3. In many cases, subject file systems may be re-mounted with read-only access. This provides addi-
tional protection against system perturbation.

Disadvantages

1. This technique is completely dependent on the subject system. Therefore, the baselining tool is forced
to operate with an in-band perspective. This implies that output may not be complete or trustworthy.

2. This technique is time consuming, and it generally requires human interaction and physical access to
the subject system.

3. The practitioner may be required to store output on a subject file system. This increases the likelihood
that other potential evidence is lost, and it exposes baseline data to attack.

4. The subject system must drop into single-user-mode which effectively means the system will be un-
available. Down time could last minutes to hours.

5. The executable used to generate the baseline is at risk to subversion in two forms: in memory during
execution and on disk before execution. On disk modification can be mitigated by running the exe-
cutable from read-only media (e.g., CDROM). The likelihood of in memory modification is reduced,
but not eliminated, by the fact that the system is in Single-User-Mode.

3.4 Multi-User-Mode

The final method of creating a baseline is to do it under normal system operation. In this state it may or
may not be possible to re-mount subject file systems with read-only access. Issues regarding where output
will be written must be considered here just as they were in the Single-User-Mode case. From the foren-
sic perspective, this technique is the least sound of all the techniques, yet because of time or operational
constraints, it may be the only viable technique.

Advantages

1. This technique could be effected without physical access to the subject system provided that remote
access already exists.

2. This technique can effectively access most to all files contained within subject file systems. Because
the baselining tool runs within the context of the subject operating system, it may lack the necessary
privileges to access all file objects.

Disadvantages
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1. This technique is completely dependent on the subject system. Therefore, the baselining tool is forced
to operate with an in-band perspective. This implies that output may not be complete or trustworthy.

2. Resulting output must either be stored on the system being baselined or to a network resource. In
both cases the data’s integrity is at risk. Use of encryption can reduce this risk, but may not be able to
eliminate it.

3. It is unlikely that any or all of the subject file systems can be re-mounted with software read-only ac-
cess. Even if a file system could be re-mounted this way, it may not be practical to do so for operational
reasons.

4. The executable used to generate the baseline is at risk to subversion in two forms: in memory dur-
ing execution and on disk before execution. On disk modification can be mitigated by running the
executable from read-only media (e.g., CDROM).

5. The system is available to users and normal processing continues. This may result in incomplete,
inconsistent, or incorrect results. Evidence may be altered or destroyed before it can be collected.

4 FTimes

This section discusses FTimes (File Topography and Integrity Monitoring on an Enterprise Scale), a system
baselining and evidence collection tool written to improve the practitioner’s ability to conduct incident
response and post mortem analysis. In particular, this section will address the motivating factors that led
to the tool’s development, provide a basic overview of the tool and its capabilities, describe how FTimes
supports file topography, and explain how it relates to each of the critical baselining factors.

4.1 Motivation

When conducting incident response, one quickly realizes that time and spatial constraints are two major
factors that degrade the overall effectiveness of the response. To combat these factors, response handlers
need tools that are simple to use and can be deployed safely and securely in remote environments. These
tools need to be so simple that any green administrator could correctly initiate diagnostic or evidence col-
lection procedures with minimal coaching. They also need to provide (or be used in conjunction with) a
mechanism that safely and securely transmits the output to a location of the handler’s choosing.

One important objective in all of this is to build tools that can be used to support prosecutions. In order
to sustain a procedure in a court, it must be possible to demonstrate the tool’s scientific basis. This is
necessary to satisfy the court’s responsibility as the “gatekeeper” for admissible evidence established by
the US Supreme Court in the Daubert decision.2 Daubert was a case involving scientific investigation, and it
was later asserted that the decision did not apply in situations involving technology. However, the Supreme
Court affirmed in Kumho Tire3 that the same scientific standards apply to technology as well as to pure
science. Basically, this means that the scientific or technological practitioner must follow the precepts of
“good science.” The techniques should satisfy several questions (see Table 1) including “whether the theory
or technique in question can be (and has been) tested, whether it has been subjected to peer review and
publication, its known or potential error rate, and the existence and maintenance of standards controlling
its operation, and whether it has attracted widespread acceptance within a relevant scientific community.”4

2Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579, 589, 1993.
3Kumho Tire Co. v. Carmichael, 526 US 137, 1999.
4Summary of Daubert decision. Cornell University Legal Information Institute.

http://supct.law.cornell.edu:8080/supct/html/92-102.ZS.html
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Table 1: Daubert Tests
Can the procedure be and has it been tested?
Has it been published and subjected to peer review?
Does it have a known or knowable error rate?
Does it have standards controlling its operation?
Has it been accepted by practitioners in the field?

Consequently, we assert that a system baselining and evidence collection tool should have the following
characteristics:

• easy to use

• does one thing extremely well (i.e., collect file attributes)

• utilizes a simple, effective, and well understood algorithm that can be applied equally well to different
operating systems

• generates output that is easily assimilated by a wide variety of existing tools

• has built-in logging that is complete, precise, and useful for analysis purposes

• is accurate, efficient, and minimally invasive

• doesn’t need to be installed on the subject system

• is small enough to run from floppy even if statically compiled

• provides only a command line interface

It was precisely these factors and characteristics that led to the creation and ongoing development of
FTimes.

4.2 Overview

The primary purpose of FTimes is to gather and/or develop topographical information and attributes about
specified directories and files in a manner conducive to intrusion and forensic analysis. FTimes was de-
signed to support the following initiatives: content integrity monitoring, incident response, intrusion anal-
ysis, and computer forensics.

FTimes is a lightweight tool in the sense that it generally doesn’t need to be installed on the subject
system, is small enough to fit on a single floppy, and provides only a command line interface.

Preserving records of all activity that occurs during a snapshot is important for intrusion analysis and
evidence admissibility. For this reason, FTimes was designed to log four types of information: configura-
tion settings, progress indicators, metrics, and errors. Output produced by FTimes is delimited text, and
therefore, it is easily assimilated by a wide variety of existing tools.

FTimes implements two basic capabilities: file topography and string search. File topography is the
process of mapping key attributes of directories and files on a given file system. String search is the process
of digging through directories and files on a given file system while looking for specific sequences of bytes.
Respectively, these capabilities are referred to as mapping and digging.

FTimes supports two operating environments: workbench and client-server. In the workbench environ-
ment, the operator uses FTimes to do things such as examine evidence (e.g., a disk image or files from a
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compromised system), analyze snapshots for change, search for files that have specific attributes, verify file
integrity, and so on. In the client-server environment, the focus shifts from what the operator can do locally
to how the operator can efficiently monitor, manage, and aggregate snapshot data for many hosts. In the
client-server environment, the primary goal is to move collected data from the subject host to a central-
ized system, known as an Integrity Server, in a secure and authenticated fashion. An Integrity Server is a
hardened system that has been configured to handle FTimes GET, PING, and PUT HTTP/S requests.

4.3 File Topography

This section focuses exclusively on how FTimes maps file objects – a process known as file topography.
FTimes supports several other modes of operation (e.g., compare, dig, get, etc.). These modes are peripheral
to the subject of system baselining. Therefore, they won’t be discussed in this paper. Detailed information
regarding all modes of operation may be found in the FTimes man page [Mon06].

To create a snapshot, FTimes essentially takes a list of directories and files as input, iteratively and/or
recursively gathers attributes, and returns a set of text records containing one or more delimited attributes
for each object encountered. In this context, an object is a directory, file, or stream. Some attributes (e.g.,
Size, ATime, etc.) are simply collected from existing data structures while others such as MD5, SHA1, or
Magic are calculated or derived based on predetermined algorithms or signatures.

The FTimes mapping facility provides three modes of operation: mapauto, maplean, and mapfull. The
first mode is designed to support ad-hoc but fairly narrow applications. Consequently, it only allows the
operator to specify a FieldMask (i.e., what attributes to collect) and a list of directories and/or files to map.
Its primary benefit is that output is written directly to stdout and stderr. Thus, it may be used in scenarios
where writing to the subject’s local disk is out of the question (e.g., during an investigation). The latter two
modes were designed to provide a rich set of controls that may be used to customize runtime behavior.
These controls are managed through the use of a configuration file.

Table 2 summarizes those attributes that are collected or derived from common file systems that FTimes
supports. An ’X’ indicates that a given attribute applies to the corresponding file system. An ’S’ indicates
that a given attribute may be simulated by the host operating system. In other words, it doesn’t really exist
in the underlying file system but the operating system provides a value for it anyway. The actual name that
FTimes uses to refer to a given attribute is displayed in parentheses. File system types and attributes are
described in appendices A and B respectively.

FTimes collects critical timestamp values before they are altered as a side-effect of the baselining process.
This is accomplished, in part, by utilizing a depth-first search algorithm on directories. Initially, it was
thought that FTimes should actively restore timestamps as part of the baselining process. This idea, while it
seemed like a reasonable approach, was abandoned due to our belief that evidence collection tools should
not attempt to artificially alter system state – such a capability could cast a shadow of doubt as to whether
or not the tool is actually collecting or creating evidence.

A critical component of FTimes is the ability to accurately calculate message digests (e.g., MD5, SHA1,
etc.). Typically, a digest algorithm takes an input message of arbitrary length and produces a fixed-length,
message digest – also known as a fingerprint, hash, or checksum. “It is conjectured that it is computationally
infeasible to produce two messages having the same message digest, or to produce any message having a
given prespecified target message digest [Riv92].” In other words, a message digest provides a mechanism
to verify data integrity. A corollary to this proposition is that when the content of a particular message (e.g.,
data within a file or stream) is changed, its hash will also change.

4.4 Relationship to Critical Baselining Factors

FTimes was designed with provenance, perspective, acuity, and integrity in mind. However, the ability of
FTimes to support each of these factors depends on the environment in which it runs. To a large extent, that
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Table 2: Attributes Collected by FTimes for Common File Systems

EXT{2|3} FAT FFS JFS NTFS UFS
ATime (atime) X S X X X X
Attributes (attributes) . X . . X .
CTime (ctime) X X X X X X
ChTime (chtime) . S . . X .
Device (dev) X . X X . X
File Index (findex) . X . . X .
GID (gid) X . X X . X
Inode (inode) X . X X . X
MD5 (md5) X X X X X X
MTime (mtime) X X X X X X
Magic (magic) X X X X X X
Mode (mode) X . X X . X
NLinks (nlinks) X . X X . X
Name (name) X X X X X X
RDevice (rdev) X . X X . X
SHA1 (sha1) X X X X X X
Size (size) X X X X X X
Stream Count (altstreams) . . . . X .
Stream MD5 (md5) . . . . X .
Stream SHA1 (sha1) . . . . X .
Stream Size (size) . . . . X .
UID (uid) X . X X . X
Volume (volume) . X . . X .
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environment is defined by the baselining technique employed.
FTimes supports provenance through its ability to calculate and analyze hashes. This task becomes more

difficult without a known good baseline. With original distribution media and a spare system in hand,
constructing and baselining a second system that approximates the subject is relatively straight forward.
The resultant baseline may then be used to distinguish known good files from those that need review.

FTimes, itself, can’t create or enforce an environment that maintains perspective. However, perspective
can certainly be maintained if FTimes is used in conjunction with either the Alternate Platform or Alternate
Operating System technique. Thus, the relationship between FTimes and perspective is the fact that it
draws attention to the need for perspective.

For the attributes that it collects, FTimes has good acuity. Great care was taken to ensure that the data
collected by FTimes is complete and accurate. FTimes does not, however, have perfect acuity. This is pri-
marily due to the fact that not all possible attributes for each supported file system are collected. Originally,
this came down to a design trade-off between special case complexity and maximum portability. Another
reason that FTimes does not and may never have perfect acuity is the fact that it was designed and imple-
mented using an imperfect process. Yes, tool builders can get it wrong despite their best intentions and
efforts. This can happen for any number of reasons, but some of the more common reasons include: lack
of subject matter knowledge, invalid assumptions, poor programming practices, and lack of testing. For-
tunately, FTimes is open source software, so anyone can review the source code and test the tool’s acuity
under varying circumstances.

FTimes contains several mechanisms that work to ensure integrity: data uploads over HTTPS to include
mutual authentication through digital certificates, dynamic creation of an output hash (i.e., a hash of the
harvested output), and separation of log and data output streams. Additionally, the Alternate Platform and
Alternate Operating System techniques may be used to provide even greater integrity assurance.

5 War Stories

FTimes has been used effectively and with great success in the areas of Incident Response (IR) and Integrity
Monitoring (IM). The stories presented in this section are representative of the types of scenarios that are
fairly common today. The first emphasizes how FTimes helped an IR team collect and analyze evidence in
a situation where there were many constraints, including no prior system baselines, working against them.
The second emphasizes how FTimes, being used in an IM scenario, provided the necessary information to
quickly recover from a break-in.

5.1 Uptime at All Costs

Between January 31 and February 1, 2002, several identical systems were compromised. Administrators
initially realized that something was wrong due to a failure in a critical application. Upon investigating
this failure, administrators determined that several system files had changed. Analysis of the Network
Intrusion Detection Systems (NIDS) logs revealed evidence of probing activity and successful attacks. Later,
it was determined that root access was obtained and that rootkits were installed on each system.

These systems were all identical in configuration and mission – Solaris 2.6 out-of-the-box installations
with third-party software that implemented a mission critical function. Due to deployment and support
agreement constraints, the IR team was not allowed to take systems off-line to image their disks. The fall-
back plan was to take a snapshot of one affected system, copy off any interesting files, and perform live
dds of as many file systems as possible – all of this activity had to take place within the allotted one hour
maintenance window. Unfortunately, it was also the case that these systems did not provide ssh/scp
or floppy access. Consequently, data and diagnostic tools were moved around with the least common
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denominator (i.e., tftp and ftp). A statically compiled version of FTimes was brought in to take the
snapshot.

To make things worse, the client had no prior system baselines. Fortunately, the IR team was able to
baseline a system that had been freshly restored from vender media. The team felt that the chance of this
system being tainted was small due to the fact that its snapshot was taken shortly after the system was
restored.

Change analysis revealed classic evidence of a rootkit (i.e., a hidden directory and trojaned system bina-
ries). Later, the actual rootkit was recovered, and its contents matched those found in the hidden directory.
Because the IR team was able to baseline a freshly restored system, change analysis yielded a good reduc-
tion in the amount of by-hand analysis needed to reconstruct the events that took place. The baseline and
snapshot contained 20,104 and 21,251 records respectively. Of these records, there were 379 changed, 92
missing, and 1,239 new files. Further by-hand analysis quickly narrowed this list down to 113 entries that
were blatantly suspicious or unknown. When it was all said and done, it took approximately 10 minutes to
map both the victim and restored machines. It took about 3 seconds for FTimes to perform change analysis,
and the by-hand effort took less than one hour.

5.2 Just Another Day at the Office

On January 2, 2001 at 09:31:47 a Linux system was attacked through rpc.statd – a daemon that imple-
ments the NSM (Network Status Monitor) RPC (Remote Procedure Call) protocol. The attacker gained root
access with this attack, and by 09:34:50 two new system accounts had been created: cgi (uid=0) and killer
(uid=504). At 09:35:00 it just so happened that an FTimes’ cron job began scanning various system critical
files. This particular job ran every hour and was configured to upload its data to an Integrity Server where
it could be protected, archived, and analyzed.

Within 10 minutes an alert email was generated and sent to the administrator of the system. When the
administrator saw the message in his mailbox, he immediately knew something was up because, under
normal circumstances, none of the monitored files were supposed to change.

The administrator looked at various system log files and consequently found evidence of the attack and
the two new accounts. Instead of over-reacting, he calmly halted the network subsystem, permanently
disabled the vulnerable daemon, and removed the new system accounts. Then, he rebooted the system and
ran a full snapshot. This data was also shipped to the Integrity Server. After reviewing the change analysis
for the entire system, he was satisfied that no additional damage had been done, so he went to breakfast.

6 Conclusion

This paper has defined baselining terminology, explained the mechanics of baselining, compared and con-
trasted different baselining techniques, and described FTimes – a system baselining and evidence collection
tool. It also explored some of the criteria that evidence collection tools and techniques must satisfy if they
are going to support prosecutions. In closing, it presented a pair of war stories that are typical of the times.

When it comes to incident response and forensic analysis, one snapshot is better than none. Two snap-
shots are better than one, and a complete history of snapshots is nearly ideal. However, even if no baseline
exists, one should not rule out the usefulness of baselining tools. A significant amount of information can
be collected or derived from data collected by such tools even though a history of prior snapshots does not
exist.

Incident response is fraught with constraints. Therefore, tool designers need to take into account these
issues and compensate, where possible, in their designs. Further, tool builders need to design their tools
with Daubert principles in mind. Specifically, such tools need to have open architectures and utilize open
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data formats so that other practitioners and tool builders may thoroughly understand and appreciate their
operation.

The design and construction of FTimes was influenced by all the considerations presented in this paper.
Thus, it has a strong foundation from forensic and incident response perspectives. The fact that it is also
ideal for integrity monitoring applications is simply a pleasant artifact of its design.

From a forensic perspective, the safest way to baseline systems is the Alternate Platform technique. In
reality, however, the practitioner is more likely to be faced with the constraint of operating in a multi-
user-mode environment. FTimes attempts to compensate for this deficiency through its lightweight design.
Additionally, its ability to use strong authentication and encryption for snapshot uploads mitigates the
inherent risk involved with transmitting sensitive data over untrusted networks.

FTimes can provide useful time and labor saving information during an incident response even where
no prior information has been collected. When used as a regular part of system monitoring, FTimes can
also provide warning of unauthorized system access. By comparing the baseline data to known data, the
recovery process can also be dramatically shortened. In some cases, a situation that might ordinarily require
rebuilding the system can be shortened to restoration of a few critical files.
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A File System Descriptions

EXT{2|3} Second or Third Extended File System (Linux)

FAT File Allocation Table (NT/2K/XP)

FFS Fast File System (FreeBSD)

JFS Journaled File System (AIX)

NTFS New Technology File System (NT/2K/XP)

UFS UNIX File System (Solaris)

B Attribute Descriptions

ATime ATime represents the time of last file access.

Attributes File attributes is a combination of one or more of the following values:
archive, compressed, directory, hidden, normal, off-line, read-only, system,
and temporary.

CTime For Microsoft operating systems, CTime represents the time that a given file
object was created. For UNIX operating systems, CTime represents the time of
last status change. In other words, it’s the last time that a file’s inode or meta
data changed.

ChTime The ChTime attribute is specific to NT-based operating systems, but remains
an undocumented attribute. In practice, however, it appears to be analogous
to the UNIX CTime attribute.

Device The Device attribute represents the serial number or ID of a given file system.
When used in conjunction with the Inode attribute, file objects within that file
system are uniquely specified.

File Index The File Index attribute represents a unique ID for each file within a given file
system. When used in conjunction with the Volume attribute, files within a
given file system are uniquely specified.

GID The GID attribute represents the group ID that is bound to a given file object.

Inode The Inode attribute represents a unique ID for each file within a given file
system. When used in conjunction with the Device attribute, files within that
file system are uniquely specified.

MD5 A 128-bit cryptographic hash of file’s data.

MTime MTime represents the time a file’s content was last modified.
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Magic The Magic attribute provides an indication as to what type of data is stored in
a particular file object (e.g., executable, text, jpeg image, etc.).

Mode The Mode attribute is a combination of a file’s protection (i.e., suid, sgid, sticky,
and rwx,rwx,rwx) and device type bits (i.e., directory, regular file, socket, sym-
bolic link, etc.).

NLinks The NLinks attribute represents the number of hard links for a given file object.

Name A fully qualified path. This attribute provides a descriptive way to identify
unique files within a system while providing location information and hints
as to what the file’s purpose may be.

RDevice The RDevice attribute contains the major/minor numbers for special device
files. Otherwise, it is not defined.

SHA1 A 160-bit cryptographic hash of file’s data.

Size The Size attribute represents a file’s size in bytes.

Stream Count The Stream Count attribute represents the number of alternate or named
streams bound to a given file object.

Stream MD5 A 128-bit cryptographic hash of stream’s data.

Stream SHA1 A 160-bit cryptographic hash of stream’s data.

Stream Size The Stream Size attribute represents a stream’s size in bytes.

UID The UID attribute represents the user ID that is bound to a given file object.

Volume The Volume attribute represents the serial number or ID of a given disk vol-
ume. When used in conjunction with the File Index attribute, files within that
Volume are uniquely specified.

C FTimes Availability

FTimes is known to run on the following operating systems: AIX, BSDi, FreeBSD, HP-UX, Linux, OpenBSD,
NetBSD, Solaris, and Windows NT/2K/XP. Source code and other project resources are available at:

http://ftimes.sourceforge.net/FTimes/
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